In this tutorial you will generate some sample (fake) measurement data so you can post it to your project.
You can create a new folder and populate it with JSON files containing the fake measurement data for the whole wafer.
import json
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def ring(
wl: np.ndarray,
wl0: float,
neff: float,
ng: float,
ring_length: float,
coupling: float,
loss: float,
) -> np.ndarray:
"""Returns Frequency Domain Response of an all pass filter.
Args:
wl: wavelength in um.
wl0: center wavelength at which neff and ng are defined.
neff: effective index.
ng: group index.
ring_length: in um.
coupling: coupling coefficient.
loss: dB/um.
"""
transmission = 1 - coupling
neff_wl = neff + (wl0 - wl) * (ng - neff) / wl0 # we expect a linear behavior with respect to wavelength
out = np.sqrt(transmission) - 10 ** (-loss * ring_length * 1e-6 / 20.0) * np.exp(
2j * np.pi * neff_wl * ring_length / wl
)
out /= 1 - np.sqrt(transmission) * 10 ** (-loss * ring_length * 1e-6 / 20.0) * np.exp(
2j * np.pi * neff_wl * ring_length / wl
)
return abs(out) ** 2
def gaussian_grating_coupler_response(peak_power, center_wavelength, bandwidth_1dB, wavelength):
"""Calculate the response of a Gaussian grating coupler.
Args:
peak_power: The peak power of the response.
center_wavelength: The center wavelength of the grating coupler.
bandwidth_1dB: The 1 dB bandwidth of the coupler.
wavelength: The wavelength at which the response is evaluated.
Returns:
The power of the grating coupler response at the given wavelength.
"""
# Convert 1 dB bandwidth to standard deviation (sigma)
sigma = bandwidth_1dB / (2 * np.sqrt(2 * np.log(10)))
# Gaussian response calculation
response = peak_power * np.exp(-0.5 * ((wavelength - center_wavelength) / sigma) ** 2)
return response
nm = 1e-3
# Parameters
peak_power = 1.0
center_wavelength = 1550 * nm # Center wavelength in micrometers
bandwidth_1dB = 100 * nm
# Wavelength range: 100 nm around the center wavelength, converted to micrometers
wavelength_range = np.linspace(center_wavelength - 0.05, center_wavelength + 0.05, 500)
# Calculate the response for each wavelength
grating_spectrum = np.array(
[gaussian_grating_coupler_response(peak_power, center_wavelength, bandwidth_1dB, wl) for wl in wavelength_range]
)
ring_spectrum = ring(
wavelength_range,
wl0=1.55,
neff=2.4,
ng=4.0,
ring_length=2 * np.pi * 10,
coupling=0.1,
loss=30e2, # 30 dB/cm = 30000 dB/m
)
spectrum = ring_spectrum * grating_spectrum
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(wavelength_range, spectrum)
plt.title("Gaussian Grating Coupler Response")
plt.xlabel("Wavelength (micrometers)")
plt.ylabel("Response")
plt.grid(True)
plt.show()
You can define different wafer maps for each wafer.
wafer_definitions = Path("wafer_definitions.json")
wafers = ["6d4c615ff105"]
wafer_attributes = {
"lot_id": "lot1",
"attributes": {
"process_type": "low_loss",
"wafer_diameter": 200,
"wafer_thickness": 0.7,
},
}
dies = [{"x": x, "y": y, "id": x * 8 + y} for y in range(8) for x in range(8)]
# Wrap in a list with the wafer information
data = [{"wafer": wafer_pkey, "dies": dies, **wafer_attributes} for wafer_pkey in wafers]
with open(wafer_definitions, "w") as f:
json.dump(data, f, indent=2)
You can easily generate some spectrum data and add some noise to make it look like a real measurement.
data_dir = Path("wafers")
metadata = {"measurement_type": "Spectral MEAS", "temperature": 25}
noise_peak_to_peak_dB = 0.1
grating_coupler_loss_dB = 3
ng_noise = 0.1
length_variability = 1
for wafer in wafers:
for die in dies:
die = f"{(die['x'])}_{(die['y'])}"
for (_, row), (_, device_row) in zip(df.iterrows(), df.iterrows(), strict=False):
cell_id = row["cell"]
if "ridge" in cell_id:
continue
top_cell_id = "rings"
device_id = f"{top_cell_id}_{cell_id}_{device_row['x']}_{device_row['y']}"
dirpath = data_dir / wafer / die / device_id
dirpath.mkdir(exist_ok=True, parents=True)
data_file = dirpath / "data.parquet"
metadata_file = dirpath / "attributes.json"
metadata_file.write_text(json.dumps(metadata))
loss_dB = 2 * grating_coupler_loss_dB
peak_power = 10 ** (-loss_dB / 10)
grating_spectrum = np.array(
[
gaussian_grating_coupler_response(peak_power, center_wavelength, bandwidth_1dB, wl)
for wl in wavelength_range
]
)
ring_spectrum = ring(
wavelength_range,
wl0=1.55,
neff=2.4,
ng=4.0 + ng_noise * np.random.rand(),
ring_length=2 * np.pi * row["radius_um"] + length_variability * np.random.rand(),
coupling=0.1,
loss=30e2, # 30 dB/cm = 30000 dB/m
)
output_power = grating_spectrum * ring_spectrum
output_power *= 10 ** (noise_peak_to_peak_dB * np.random.rand(len(wavelength_range)) / 10)
d = {
"wavelength": wavelength_range * 1e3,
"output_power": output_power,
"polyfit": loss_dB,
}
data = pd.DataFrame(d)
data.attrs.update(metadata)
data.to_parquet(data_file)